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Abstract In its original form the calculus on measure chains is mainly a
differential calculus. The notion of integral being used, the so-called Cauchy
integral, is defined by means of antiderivatives and, therefore, it is too nar-
row for the development of a full infinitesimal calculus. In this paper, we
present several other notions of integral such as the Riemann, the Cauchy-
Riemann, the Borel and the Lebesgue integral for functions from a measure
chain to an arbitrary real or complex Banach space. As in ordinary calculus,
of those notions only the Lebesgue integral provides a concept which ensures
the extension of the original calculus on measure chains to a full infinitesimal
calculus including powerful convergence results and complete function spaces.
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1 Introduction

The creation of measure chains was motivated by the long standing desire
to have some means which allow to treat problems arising in the theory of
differential and/or difference equations in a unified way. With this aim in
mind, Stefan Hilger introduced in his PhD thesis [7] (see also [8]) the concept
of a measure chain and developed a rather complete theory of differentiation
for functions which are defined on a measure chain (or a subset of it) and
have their values in an arbitrary real or complex Banach space. As far as
integration of those functions is concerned, he mentioned the possibility of a
measure theoretic approach, however, (in favor of an application of his theory
to a prototype problem on invariant manifolds) he confined his study to a
basic notion of integral which is simply defined by means of antiderivatives.
The corresponding notion of integral, the so-called Cauchy integral, turned
out to be sufficient for the achievement of the original goals, and even in the
long run, it has proved to be a successful concept leading to many research
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activities providing interesting new results in the field of dynamic equations
on measure chains (among many others, ten papers in this volume).

While most of these activities focus on applications of the calculus on
measure chains to dynamic equations, the foundations of this calculus have
obtained only minor attention. In some papers on dynamic equations, the
calculus itself has been promoted, but only as much as it was needed for a
certain purpose (for the chain rule, e.g., see Keller [10] and Pötzsche [13]).
As to our knowledge, the only papers (or theses) dealing with the theory of
integration on measure chains are Sailer [14], Neidhart [12], Guseinov and
Kaymakçalan [9] and Bohner and Peterson [4, Chapter 5].

In this paper, we give a survey of the main results contained in the diploma
thesis [12] of the second author. In fact, we outline the definitions of the
Cauchy, the Riemann, the Cauchy-Riemann, the Borel and the Lebesgue in-
tegral for functions from a measure chain into an arbitrary real or complex
Banach space; and we briefly sketch their mutual interrelations. For further
information on this topic we refer the reader to Neidhart [12].

2 Basic fact about measure chains

For the reader’s convenience we briefly state some facts on measure chains
which are used in this paper. For more details we refer to Hilger [8] and
Bohner & Peterson [3, Section 8.1].

A measure chain is a triple (T,≤, µ) consisting of a set T, a relation ≤ on
T and a function µ : T × T → R, the so-called growth calibration, such that
the following axioms hold:

Axioms on ≤ :

(Reflexivity) ∀ x ∈ T : x ≤ x

(Antisymmetry) ∀ x, y ∈ T : x ≤ y ≤ x ⇒ x = y

(Transitivity) ∀ x, y, z ∈ T : x ≤ y ≤ z ⇒ x ≤ z

(Totality) ∀ x, y, z ∈ T : x ≤ y or y ≤ x

(Completeness) Any non-void subset of T which is bounded above
has a least upper bound

Axioms on µ :

(Cocycle property) ∀ x, y, z ∈ T : µ(x, y) + µ(y, z) = µ(x, z)
(Strong isotony) ∀ x, y ∈ T : x > y ⇒ µ(x, y) > 0
(Continuity) µ is continuous

In order to fix (possibly ambiguous) notation we denote by σ : T → T the
forward jump operator, i.e. σ(t) := inf {s ∈ T : s > t} on T, and by ρ : T→ T
the backward jump operator i.e. ρ(t) := sup {s ∈ Ts < t}. Thus, a point
t ∈ T which is not a maximum of T is called right-scattered if σ(t) > t,
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right-dense if σ(t) = t, left-scattered if ρ(t) < t and left-dense if ρ(t) = t.
Finally, by Tκ we denote the set {t ∈ T : t is no isolated maximum of T} and
by µ∗(t) := µ(σ(t), t) the graininess µ∗ : T→ [0,∞) of T.

Looking for examples of measure chains it is apparent that subsets of the
real line together with the usual ordering ≤ and µ(s, r) := s − r are good
candidates. The question which of those sets are in fact measure chains is
answered as follows (see Hilger [8, Theorem 1.5.1]):

Theorem 2.1 A subset T of R is a measure chain (with respect to the usual
ordering ≤ of R and µ(s, r) = s− r) if and only if T has the form T = I \O
where I is an interval and O an open subset of R.

Thus, real intervals and closed subsets of R are important examples of
measure chains. On the other hand, they are more than just examples, they
are to some extent representative. In order to see this, the notion of an
isomorphism between measure chains can be introduced by saying that two
measure chains T1 and T2 with respective growth calibrations µ1 and µ2 are
isomorphic if there exists a bijection f : T1 → T2 such that µ2(f(s), f(r)) =
µ1(s, r) for all r, s ∈ T1. With this notion at hand, the following can be said
(see Hilger [8, Theorem 2.1]).

Theorem 2.2 Each measure chain is isomorphic to a set of the form I \ O
where I is a real interval and O an open subset of R.

It is due to this theorem that measure chains are usually considered to be
subsets of R and, even more, that they are closed subsets of R. In fact, in
most of the literature a measure chain is by definition a closed subset of R
and, as such, it is called a time scale. While this is legitimate and (perhaps)
helpful for visualizing measure chains, from the point of view of mathematical
aesthetics the original definition seems more appropriate.

Before we dwell on the topic of this paper we introduce a means to classify
measure chains according to their orders being dense or not (see Neidhart
[12, Definition 19]). This distinction is needed in Section 5 on the Cauchy-
Riemann integral.

Definition 2.3 A measure chain (T,≤, µ) is called densely ordered if for any
two points x, z ∈ T there exists a point y ∈ T such that x ≤ y ≤ z and x 6= y
as well as y 6= z.

The following theorem is proved in Neidhart [12, Theorem 80].

Theorem 2.4 A measure chain is densely ordered if and only if it is isomor-
phic to a real interval.

This theorem tells us that the densely ordered measure chain are, in a way,
trivial. The reason is, that the calculus on measure chains reduces to the or-
dinary calculus of real numbers if the underlying measure chain is isomorphic
to an interval.
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3 The Cauchy Integral

The notion of integral which is commonly used in the literature on measure
chains or time scales is the one introduced by Hilger [7], so-called Cauchy-
Integral. In order to recall its definition we have to introduce two notions.
To this end let T be an arbitrary measure chain and Y an arbitrary real or
complex Banach space.

Definition 3.1 A function f : T → Y is called regulated if its left-sided
limits exist in all left-dense points of T and its right-dense limits exist in all
right-dense points of T.

Definition 3.2 A function F : T → Y is a called a pre-antiderivative of
a function f : T → Y if F is continuous and if there exists a set D ⊆ Tκ

such that Tκ \D is countable, contains no right-scattered points and has the
property that the restriction of F to D is differentiable with derivative f .

The crucial relation between regulated functions and pre-antiderivatives
is described in the following theorem (see Hilger [8, Theorem 4.2]).

Theorem 3.3 If f : T→ Y is a regulated function, then there exists at least
one pre-antiderivative F : T → Y of f . Moreover, for any two a, b ∈ T the
difference F (a)− F (b) does not depend on the choice of F .

With this theorem at hand it is straightforward to define an integral for
regulated functions.

Definition 3.4 For any regulated function f : [a, b] → Y from an interval of
a measure chain T to a Banach space Y, the Cauchy integral is defined by

∫ b

a

f(x)∆x := F (b)− F (a)

where F : [a, b] → Y is any pre-antiderivative of f on [a, b].

Since the Cauchy integral is widely known and extensively used in the
literature we do not dwell on it any further. We rather want to mention that
the main advantage of this integral is its simplicity, i.e., its simple derivation
from the concept of differentiation. No “construction” of the integral by means
of some limiting process is necessary. On general measure chains, however,
this advantage is somewhat obscured by the fact that pre-antiderivatives are
involved, objects which are quite subtle and not easy to handle.

The main disadvantage of the Cauchy integral is, that the set of functions
which are integrable, i.e., the set of regulated functions, is too small. In
fact, as known from ordinary calculus, the set of regulated functions is even a
proper subset of the set of Riemann integrable functions, not to mention the
set of Lebesgue integrable functions.
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4 The Riemann integral

In ordinary calculus, the Riemann integral of a real-valued function is usually
defined by either using Riemann sums or upper and lower Darboux sums.
If the values of the function under consideration lie in an arbitrary Banach
space, however, the Darboux sum approach cannot be used because of the
lacking order structure of a general Banach space. Since, in this paper, we
deal with Banach space-valued functions, we therefore mimic the Riemann
sum approach.

To this end we first explain what we mean by saying that, for some δ > 0,
a partition Z = (a0, . . . , an) of the interval [a, b] is finer than δ. In fact, we
mean that for each i = 1, . . . , n we have

either µ(ai, ai−1) ≤ δ or both µ(ai, ai−1) > δ and ai = σ(ai−1).

With this notion at hand we can define the integrability of a Banach space-
valued function in the sense of Riemann.

Definition 4.1 A function f : [a, b] → Y from an interval [a, b] of a measure
chain T to Banach space Y is called Riemann integrable if there exists a y ∈ Y
such that for any ε > 0 there is a δ > 0 with the following property: For any
partition Z = (a0, . . . , an) of [a, b] which is finer than δ and any set of points
y1, . . . , yn ∈ Y with yj ∈ [aj−1, aj) for j = 1, . . . , n one has

∥∥∥ y −
n∑

j=1

f(yj) µ(aj , aj−1)
∥∥∥ ≤ ε .

Using the fact that for any δ > 0 there always exists a partition of [a, b]
which is finer than δ, we easily get the following result.

Theorem 4.2 If f : [a, b] → Y is Riemann integrable according to Definition
4.1, then the y ∈ Y appearing in this definition is uniquely determined, and
it is called the Riemann integral of f , in signs

y =
∫ b

a

f(x) dx .

The advantage of the Riemann integral over the Cauchy integral is that
the set of Riemann integrable functions is definitively larger than the set of
Cauchy integrable functions, i.e. the set of regulated functions. In fact, from
ordinary calculus we know (see, e.g., Elstrodt [6, IV, Theorem 6.1]), that a
real- or complex-valued bounded function is Riemann integrable if and only
if it is Lebesgue-almost everywhere continuous.

The various disadvantages of the Riemann integral are well known from
ordinary calculus. Apart from the fact that the set of Riemann integrable
functions is too small (compared to the set of Lebesgue integrable functions)
we just mention the lack of reasonable convergence results.

For more on the Riemann integral on time scales we refer to Sailer [14],
Guseinov and Kaymakçalan [9], Bohner and Peterson [4, Chapter 5].
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5 The Cauchy-Riemann integral

In ordinary calculus, the Cauchy-Riemann integral (cf. Amann and Escher
[1, Chapter VI.3]) is defined for functions f : I → Y where I is a compact
interval and Y a Banach space. The idea underlying this concept of integral
is, first to assign to any step function (more precisely, to any function which
is constant on any open interval of a partition of I; we call such a function
therefore an o-step function) an integral value, and then to extended the set
of integrable functions from the Banach space Sto(I,Y) of o-step functions to
the Banach space R(I,Y) of regulated functions. This extension is based on
the Linear Extension Theorem of Functional Analysis (cf. [1, Theorem 2.6] or
[11, Theorem 3.1]) which reads as follows:

Theorem 5.1 Let X 6= {0} and Y be normed linear spaces and D 6= {0} a
subspace of X which is dense in X . Then, for any bounded linear operator
A : D → Y there is exactly one bounded linear operator A : X → Y which is
an extension of A. Moreover, for all x0 ∈ X one has A(x0) = limx→x0 A(x).

This theorem can be applied to the setting where (within the Banach
space B(I,Y) of bounded functions from I to Y) one has D = Sto(I,Y),
X = R(I,Y) and A is the integral operator which assigns to each o-step
function its canonical integral value. This situation is depicted in the following
diagram.

Sto(I,Y)

Sto(I,Y) = R(I,Y)

R
(for step functions)

R
(for integrable functions)

Y
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In order to carry over this situation from ordinary to the measure chain
calculus we call a function f from an interval I = [a, b] of a measure chain T to
a Banach space Y an o-step function if there exists a partition Z = (a0, . . . , an)
of [a, b] such that the restriction of f to any of the open intervals (ai−1, ai),
i = 1, . . . , n, is constant. The set of o-step functions f : I → Y is denoted by
Sto(I,Y), and the canonical integral operator

∫
(Z)

: Sto(I,Y) → Y is defined
by means of ∫

(Z)

f :=
n∑

i=1

mi µ(ai, ai−1) (1)

where mi is the constant value of f on the open interval (ai−1, ai) and µ(·, ·)
the growth calibration of T.
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If T is densely ordered, it can be shown along the lines of ordinary calculus
that the value (1) is independent of the choice of the partition Z. However, if T
is not densely ordered, the integral value (1) may change with the partition,
and even may fail to be well defined (if at least one of the open intervals
(ai−1, ai) is empty). That, in fact, one may have

∫
(Z)

f 6= ∫
(U)

f for different
partitions Z and U can be seen by means of the following simple example.

Example 5.2 On the measure subchain {0, 1, 2, 3, 4, 5} of R we consider the
real-valued function f whose values are f(0) = f(1) = f(2) = 10 and f(3) =
f(4) = f(5) = 1. Then f is an o-step function with respect to the two
partitions Z := (0, 2, 5) and U := (0, 3, 5), and the corresponding integral
values

∫
(Z)

f = 2 ·10+3 ·1 = 23 and
∫
(U)

f = 3 ·10+2 ·1 = 32 are different.

1
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If, in contrast to the previous example, a measure chain is densely ordered,
then the Cauchy-Riemann integral can be introduced as in ordinary calculus
using the Extension Theorem 5.1. A summary of this approach using o-step
functions is as follows (see Neidhart [12, Section 8.1]).

Theorem 5.3 If T is a densely ordered measure chain and f : [a, b] → Y
an o-step function from an interval [a, b] ⊆ T to a Banach space Y, then the
integral (1) is well-defined and independent of the partition Z of T. Moreover,
for any function f ∈ Sto(I,Y) the Cauchy-Riemann integral is defined as

∫ b

a

f(x) dx = lim
n→∞

∫

(Z)

fn (2)

where (fn)n∈N is any sequence of o-step functions which converges to f uni-
formly on [a, b].

On the other hand, if T is not densely ordered, the integral (1) may not
exist or may depend on the choice of the partition Z, and hence the limit (2)
may not exist.

The difficulties with the o-step functions (whose use was motivated from
ordinary calculus) can be avoided if one modifies the kind of step functions
being used. To this end we introduce the notion of an h-step function for
any function f from an interval I = [a, b] of a measure chain T to a Banach
space Y, if there exists a partition Z = (a0, . . . , an) of [a, b] such that f is
constant on any half-open interval [ai−1, ai), i = 1, . . . , n, of the partition Z.
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The set of h-step functions f : I → Y is denoted by Sth(I,Y), and the can-
onical integral operator

∫
[Z)

: Sth(I,Y) → Y is defined by

∫

[Z)

f :=
n∑

i=1

mi µ(ai, ai−1) (3)

where, again, mi is the constant value of f on [ai−1, ai) and µ(·, ·) the growth
calibration of T.

At first glance, the advantage of h-step functions over o-step functions is
not apparent. However, one can show that for any measure chain T (densely
ordered or not) the integral (3) is well defined and independent of the partition
Z of I. Moreover, any h-step function is also an o-step function, and if the
integral

∫
(Z)

f exists, it coincides with
∫
[Z)

f . In any case, an application of
Theorem 5.1 yields the following result (see Neidhart [12, Section 8.1]).

Theorem 5.4 For any measure chain T and any h-step function f from an
interval I = [a, b] ⊆ T to a Banach space Y the integral (3) is well-defined and
independent of the partition Z of I. Moreover, for any function f ∈ Sth(I,Y)
the Cauchy-Riemann integral is defined as

∫ b

a

f(x) dx = lim
n→∞

∫

[Z)

fn (4)

where (fn)n∈N is any sequence of h-step functions which converges to f uni-
formly on [a, b].

Comparing Theorems 5.3 and 5.4 one might come to the conclusion that
the o-step functions approach to the Cauchy-Riemann integral could be dis-
missed in favor of the h-step functions approach, because the former requires a
densely order measure chain while the latter one works for all measure chains.
This guess, however, is not quite true. The reason is, that in either case the set
of integrable functions is determined by an application of the Linear Extension
Theorem 5.1 (where X is the Banach space B(I,Y) of bounded functions from
I to Y, equipped with the sup-norm). In the first case this extension leads
from the normed linear space D := Sto(I,Y) to its closure Sto(I,Y), and in
the second case from D := Sth(I,Y) to Sth(I,Y). The point now is, that
Sto(I,Y) is identical with the Banach space R(I,Y) of regulated functions,
while Sth(I,Y) can be a proper subspace of R(I,Y). In any case, however,
Sth(I,Y) contains all rd-continuous (and hence all continuous) functions (see
Neidhart [12, Theorem 149]).

In summary, we can say that on densely ordered measure chains one should
use the o-step function approach. This yields the full set of regulated functions
R(I,Y) as the set of integrable functions while the h-step function approach
may yield a proper subset. On measure chains which are not densely ordered,
however, the h-step function approach must be used, because the o-step func-
tion approach may fail. But then the set of integrable functions may be a
proper subset of R(I,Y).
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The overall picture of this situation is given in the following diagram.

Sto(I,Y)
or

Sth(I,Y)

Sto(I,Y) = R(I,Y)
or

Sth(I,Y) ⊂ R(I,Y)

R
(for step functions)

R
(for integrable functions)

Y
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"
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!

'

&

$

%
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&

$

%

B(I,Y)

-

-

The main advantage of the Cauchy-Riemann integral is its quick and el-
egant introduction. In the context of general measure chains, however, this
advantage is obscured by the fact that one has to distinguish between densely
ordered measure spaces and those which are not densely ordered, and such
a distinction contradicts the general philosophy of the calculus of measure
chains. The main disadvantage of the Cauchy integral, however, is, that the
set of integrable functions is too small. In fact, it is a (possibly even proper)
subset of the set of regulated functions, which in turn is definitively smaller
than the set of Riemann integrable functions, not to mention the Lebesgue
integrable functions.

6 Measure and integral on measure chains

As the term “measure chain” already indicates, and as Hilger mentioned in
[7, page 12] (see also [8, page 25]), the growth calibration of a measure chain
T induces a measure on T in a canonical way. On the other hand, knowing a
measure on T, the construction of an integral for functions f : T→ [−∞,+∞]
is a straightforward task of measure theory. One may wonder that these
facts have not been observed and picked up at the early states of the usage
of measure chains, and that still today the Cauchy integral is the standard
integral on measure chains.

In the remainder of this paper we sketch, how the construction of the mea-
sure theoretic integral indeed works for functions from an arbitrary measure
chain T to an arbitrary real or complex Banach space Y.

To this end we first generate a suitable σ-Algebra over T by noticing that
each measure chain is a topological space, generated by the open intervals,
and that in each topological space the set of open sets generates a σ-Algebra,
the so-called Borel σ-Algebra B. In order to construct a measure on B which
is compatible with the growth calibration µ : T × T → R, we introduce a
suitable generator I of B (see Neidhart [12, Theorems 332 and 333]).
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Theorem 6.1 The system of sets I :=
{

[a, b) : a, b ∈ T , a ≤ b
} ∪ M , where

M =
{ ∅ , if T has no Maximum,
{maxT } , otherwise,

is a semi-ring over T and a generator of B.

That the semi-ring I is indeed the right choice for our purpose can be seen
from the following result (see Neidhart [12, Theorem 338]):

Theorem 6.2 The mapping ν : I → R defined by

ν(A) :=
{

µ(r, s) , if A = [s, r), where s, r ∈ T and s ≤ r,
0 , if maxT exists and A = {maxT},

is a σ-finite pre-measure on I.

In view of the Extension Theorems of measure theory (see, e.g., Cohn [5],
Elstrodt [6]), the pre-measure ν can be extended to a uniquely determined
measure on B, the so-called Borel measure β. Moreover, if L denotes the
measure theoretic completion of B (i.e. the union of B with the set of all
subsets of null-sets of B), then L is a σ-Algebra as well, the so-called Lebesgue
σ-Algebra, and there exists exactly one extension of β (and thus of ν) to a
measure λ on L, the so-called Lebesgue measure.

The situation we have gained so far is depicted in the following diagram
where P(T) denotes the set of all subsets of T.

¶

µ

³

´
I

?

ν

º

¹

·

¸
B

?
[−∞ , +∞]

β

¾

½

»

¼
L

?

λ

P(T)

¾

½

»

¼

Having the measure spaces (T,B, β) and (T,L, λ) at hand we are now in a
position to introduce the Borel and the Lebesgue integral for functions from
a measure chain to a Banach space by simply employing the standard proce-
dure from measure theory. Since this is commonly known only for real-valued
functions, we first make a brief excursion to the so-called Bochner integral
which is the proper notion of integral for Banach space-valued functions. For
more details on the construction of this kind of integral we refer to Cohn [5,
Appendix E] (see also Aulbach and Wanner [2, Appendix A]).
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Let (X, A, α) be a measure space over an arbitrary set X and B(Y) the
Borel σ-Algebra of a Banach space Y. Then a function f : X → Y is called
measurable if f−1(B) ∈ A for all B ∈ B(Y), and a measurable function
is called simple if it attains only finitely many values. Roughly speaking,
the introduction of an integral for measurable functions f : X → Y is to first
define the integral for simple functions (in the obvious way) and then to define
the integral of f by suitably approximating f by a sequence (fn)n∈N of simple
functions and to define the integral of f as the limit of the integrals of the fn.

In case Y equals R ∪ {±∞} or C, this is the standard procedure which
can be found in any textbook on measure theory. If Y is a (real or complex)
Banach space with finite dimension, one may choose a basis {y1, . . . , yd} of Y
and define the (real- or complex-valued, respectively) coordinate mappings fi

of f through the relation f(x) =:
∑d

i=1 fi(x) · yi for all x ∈ X. By means of
the relation ∫

X

f(x) dµ :=
d∑

i=1

( ∫

X

fi(x) dµ
)
· yi

the definition of the integral of f is then reduced to the well known inte-
gral for real- or complex-valued functions. If the Banach space Y is infinite-
dimensional, however, the general construction of the integral breaks down if
the image of X under f is not separable, i.e. if f(X) does not contain a dense
countable subset. This can be seen as follows:

• If (fn)n∈N is a sequence of simple functions fn : X → Y converging to
f : X → Y, then f(X) is contained in the closure of the set

⋃∞
n=1 fn(X).

And since the functions fn are simple, the sets fn(X) are finite, thus⋃∞
n=1 fn(M) is countable. Consequently, f(X) is necessarily separable.

In addition, in the infinite-dimensional context the following problem arises:

• The sum of two measurable functions from X to Y is not necessarily
measurable (see Cohn [5, Appendix E, Exercise 2]).

In order to overcome these complications one has to replace the class of mea-
surable functions by a more adequate class. In fact, to suitably strengthen the
notion of measurability, a function f : X → Y is called strongly measurable if
it is measurable and if f(X) is separable. This definition immediately implies
that every simple and every measurable function is strongly measurable. On
the other hand, if Y is a separable Banach space (which is particularly true if Y
is finite-dimensional) then strong measurability is the same as measurability.

Employing the concept of strong measurability, the introduction of an
integral for functions from a measure space (X, A, α) to a Banach space (Y, |·|)
is almost straightforward. In fact, the set of strongly measurable functions is a
linear space (with the usual operations) which is closed under the formation of
pointwise limits, and any strongly measurable function is the pointwise limit
of a sequence of simple functions. A strongly measurable function f : X → Y
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is then called (Bochner) integrable, if the function |f | : X → R is integrable
with respect to the measure α, and the integral of f is defined by means of an
approximating sequence (fn)n∈N of simple functions as follows: Each fn can
be written in the canonical form

∑k
j=1 aj χAj , and hence its integral is defined

as
∫

X
fn(x) dα :=

∑k
j=1 aj α(Aj). Then, for an arbitrary strongly measurable

function f : X → Y the integral is defined as
∫

X

f(x) dα := lim
n→∞

∫

X

fn(x) dα ,

where (fn)n∈N is a sequence of simple functions converging to f . That this
integral is indeed well defined follows as in the case of real-valued functions.
Of the other properties of this integral we just mention that Lebesgue’s Domi-
nated Convergence Theorem looks the same as for real-valued functions, while
Beppo Levi’s Monotone Convergence Theorem is, of course, not available due
to the lacking order structure of general Banach spaces. For more properties
of the Bochner integral we refer to Cohn [5, Appendix E].

Returning from general measure spaces (X, A, α) to the measure spaces
(T, B, β) and (T,L, λ) appearing in the calculus of measure chains, for any
function f from an arbitrary measure chain T to an arbitrary real or complex
Banach space Y we immediately obtain the Borel and the Lebesgue integral

∫

T
f(x) dβ and

∫

T
f(x) dλ

by simply applying the above-mentioned general result. As a first relation to
the previously described integrals we get (see Neidhart [12, Theorem 349]):

Theorem 6.3 Any regulated function f : T→ Y is Borel and Lebesgue inte-
grable.

Basically, the definition of the Borel and Lebesgue integral applies to func-
tions which are defined throughout the whole measure chain under consider-
ation, and so the (seemingly redundant) question arises of how to define the
Borel and the Lebesgue integral for functions which are defined on subsets, in
particular intervals, of a measure chain only. In order to answer this question
we take two points a and b of a measure chain T with a < b and notice that
the intervals [a, b], (a, b), [a, b) and (a, b] are Borel and Lebesgue measurable.
Thus, using the suitable restrictions of f the following integral values are well
defined: ∫

[a,b]

f(x) dβ,

∫

(a,b)

f(x) dβ,

∫

[a,b)

f(x) dβ,

∫

(a,b]

f(x) dβ,

∫

[a,b]

f(x) dλ,

∫

(a,b)

f(x) dλ,

∫

[a,b)

f(x) dλ,

∫

(a,b]

f(x) dλ.

While in real calculus those terms coincide (if f is Lebesgue integrable), this
is not the case in general measure chains. This is due to the following result
(see Neidhart [12, Theorem 341]).
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Theorem 6.4 Any singleton {t} ⊆ T is Lebesgue measurable, and we have

λ
({t}) = β

({t}) = µ∗(t) .

Hence, the Lebesgue and the Borel measure of a singleton {t} is 0 for right-
dense points t, while for right-scattered t it has the positive value of the grain-
iness µ∗(t).

Due to this theorem the question arises which of the four Borel and which
of the four Lebesgue integrals is suitable for the definition of the respective
integral between a and b. It turns out (see Neidhart [12, Section 10.2]) that
in both cases the use of the half-open interval [a, b) is the choice which leads
to the desired result (Theorem 6.5 below). We thus define for any a, b ∈ T
with a < b and any Borel or Lebesgue integrable Function f : T → Y the
Borel and the Lebesgue integral by

∫ b

a

f(x) dβ :=
∫

[a,b)

f(x) dβ and
∫ b

a

f(x) dλ :=
∫

[a,b)

f(x) dλ ,

respectively. With these notions at hand we finally get the following result
which relates the various notions of integrals considered in this paper (see
Neidhart [12, Theorem 350]).

Theorem 6.5 Suppose T is any measure chain, Y any real or complex Ba-
nach space and f : T → Y strongly measurable. Then, if for some a, b ∈ T
with a < b the restriction of f to the interval [a, b) is Lebesgue integrable, it is
also integrable in the sense of Cauchy, Riemann, Cauchy-Riemann and Borel,
and the corresponding integrals have the same value as

∫ b

a
f(x) dλ.

We close this section by noticing that the Lebesgue integral for real-valued
functions on time scales has recently been considered by Bohner and Guseinov
in Bohner and Peterson [4, Chapter 5].

7 Conclusion: The best is (almost) for free

We summarize our previous considerations by stating that — as in ordinary
calculus — the Lebesgue integral is by far superior to all other notions of
integrals which are possible on measure chains. The Lebesgue integral does
not only provide the largest set of integrable functions, its derivation is even
simpler than the construction of the other types of integrals, because most of
the technical details can be avoided by simply quoting standard results from
measure theory. In fact, once it is observed that the growth calibration of a
measure chain canonically generates a σ-finite pre-measure on the semi-ring
of half-open intervals, the rest of the work is done by standard Extension The-
orems. We therefore come to the astonishing conclusion that in the context
of integration on measure chains the best is (almost) for free.
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